ARS Combination with an Evolutionary Algorithm for Solving MINLP Optimization Problems
نویسنده
چکیده
Adaptive Random Searches (ARS) are simple and effective optimization methods used for handling complicated nonconvex / multimodal nonlinear programming (NLP) and mixed-integer nonlinear programming (MINLP) problems. ARS iteratively adapt search characteristics according to the past successful / failure steps. Periodic search domain expansions and contractions improve significantly the reliability in locating the global optimum. However, most of the ARS parameters are apriori set, and then the algorithm cannot be used at their maximum effectiveness. The present paper proposes a combination of ARS with parallel search in competitive members ('families') and an evolutive algorithm (EA) to automatically adapt ARS parameters and search characteristics. The analysis is applied to the MMA-ARS of Maria [1,2] adapted in the form of MMAMI for handling MINLP problems, and then coupled as MMAMI-EA rule. The effectiveness, expressed as computational effort and reliability in locating the global solution, is checked for comparison with genetic algorithms (GA), simulated annealing (SA), ARS, and EA reported results in solving six MINLP test problems. While MMAMI reports a significant decrease of computational effort comparatively with ES, GA, and SA, the combination MMAMI-EA considerably improves the search reliability.
منابع مشابه
Solving Traveling Salesman Problem based on Biogeography-based Optimization and Edge Assembly Cross-over
Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography concept. This algorithm uses the idea of animal migration to find suitable habitats for solvin...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملNew Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem
Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کامل